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Abstract. We develop an algebraic quantisation method for the Birkhoff-Gustavson normal 
form. For this purpose the Weyl quantisation rule is used. The method developed here 
for multidimensional systems allows one to calculate the energy levels and the transition 
probabilities. We give a brief review of the normal form, derive some of its general 
properties, and find a general analytic solution for the fourth-degree normal form for 
Hamiltonians of two degrees of freedom. In particular, this includes the Htnon-Heiles 
system. We compare the results of specific examples with other works. The question of 
canonically invariant quantisation, the relation to the quantum mechanical perturbation 
theory and the question of chaotic behaviour and quantum stochasticity are discussed. We 
show that the operators corresponding to the formal integrals of the motion are also 
quantum mechanical integrals. If the normal form accidentally terminates, so that the 
classical system is integrable, then this implies quantum integrability of the normal-form 
Hamiltonian. 

1. Introduction 

The main goal of this work is to provide an algebraic algorithm for the quantisation 
of the Birkhoff-Gustavson normal form for the Hamiltonians near an equilibrium 
point. This is made possible if quantum mechanical operators are assigned to the 
individual monomials of coordinates and momenta, by means of the Weyl quantisation 
rule. By virtue of t$e normal form the Hamilton operator thus obtained canAbe split 
into the sum, A = & + f i A , o f  !he harmonic part Ho and anharponic pact HA, such 
that their commutator [Ho, H A ]  vanishes. A Consequently, Ho and HA can be 
diagonalised simultaneously; in particular, H A  is diagonal in a basis of harmonic 
functions. In the non-resonant case, where the (classical) normal form Hamiltonian 
depends only on the actions, the result reduces to the tori quantisation. 

The quantisation of the normal form in resonant cases is reduced to simple algebraic 
manipulation? involving diagonalisatio? of finite matrices. The calcylation of the matrix 
elements of HA in the eigenspaces of Ho is simple as the operator HA can be expressed 
in terms of annihilation and creation operators. This purely algebraic method is easily 
programmable, and since its algorithm is straightforward, it might have advantages as 
compared with the tori quantisation, where the action integrals must be calculated 
numerically (cf Swimm and Delos 1979). The major novelty is that we are able to 
calculate transition probabilities. It should be noted that the quantisation of the normal 
form has already proved to be highly accurate (sometimes better than 1/100 of a 
percent) in various contexts (Swimm and Delos 1979, Reinhardt and Farelly 1982, 
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Williams and Koonin 1982) and is competing with perturbation theory, in particular 
for highly non-separable systems. 

To show what is involved in the technique of this method we briefly explain the 
Birkhoff-Gustavson normal form, for the convenience of readers not familiar with it. 
Suppose we are studying the motion of a classical Hamilton system near an equilibrium 
point. The system may have an arbitrary number N of degrees of freedom. Then, to 
the lowest approximation the motion is described by N uncoupled (one-dimensional) 
harmonic oscillators. However, they become coupled if the higher-order (anharmonic) 
terms in the Taylor expansion of the potential are taken into account. As a result of 
the coupling the system becomes non-integrable in almost all cases; in fact, being a 
generic system, it is neither integrable nor ergodic but shows a stochastic transition at 
the critical energy (Berry 1983, Zaslavsky 1981, Robnik 1982a). Above the critical 
energy the motion is chaotic on the entire energy surface (in phase s’pace), but below 
that energy it has all features of regular integrable motion. The numerical experiments 
(HCnon and Heiles 1964, Robnik 1981, 1382b) and the analytical investigations 
(Churchill er a1 1978, Chang et a1 1982, Braun 1973, Kummer 1976) show that there 
exist additional integrals of motion in that region of phase space. One can see them 
as invariant tori, i.e. as invariant curves of the PoincarC mappings of the surface of 
section. These are so dense on the energy surface that it is hard to resolve the gaps 
between them. For practical purposes the system is thus integrable in the regular 
region of phase space (i.e. below the critical energy of the stochastic transition). 

We have then the difficult pfoblem to predict analytically the invariant tori, or 
equivalently, to construct the integrals of motion. One of the possible methods is to 
calculate the normal form of the classical Hamiltonian. This was originally developed 
by Birkhoff for the non-resonant cases (no commensurability conditions for the frequen- 
cies of the harmonic oscillators), and consists of a series of canonical transformations, 
which are polynomial functions of coordinates and momenta. The algorithm is such 
that after s -2  transformations the new Hamiltonian is in normal form to degree s. By 
definition, this means that all monomials of order S s  in the power expansion of the 
Hamiltonian commute (Poisson brackets vanish) with the (unchanged) harmonic part 
of the Hamiltonian. In fact, all normal terms are just polynomials of the N actions. 
This formal procedure can be extended ad infinitum (s+co),  whereby one obtains a 
power expansion of the Hamiltonian as a function of the actions. Each of N actions, 
when expressed in terms of the original coordinates and momenta, is itself a power 
expansion of an integral of motion. However, Siege1 (1941) has proved that the series 
diverges, which is related to the non-integrability of the Hamiltonian: if the convergence 
radius of the series were non-zero, then the system would be rigorously integrable in 
some region of phase space, since the integrals of motion would be analytic there. But 
according to the KAM theorem a generic system is non-integrable, and we have thin 
gaps of irregular, chaotic motion between the invariant tori unless the system is 
accidentally rigorously integrable. The convergence radius of such series can generally 
never be made non-zero, whatever the method we use. Hence the name formal integral 
of motion. 

Birkhoff’s algorithm has been generalised by Gustavson (1966) to the resonant 
cases. (See also Arnold 1980.) The divergence difficulties of course still exist. But 
one should observe that while the infinite series has no rigorous meaning, the Hamil- 
tonian in normal form truncated after the degree s is a rigorously integrable system, 
which is close to the original system in ‘some sense’. It has never been clarified how 
this ‘closeness’ should be measured, but numerical and analytical experience show a 
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remarkable accuracy of the approximation of periodic orbits, invariant tori and their 
bifurcations. It has been taken for granted that the truncated normal form becomes 
exact asymptotically as we approach the equilibrium point. Clearly, above the critical 
energy, where the stochastic transition (onset of irregular, chaotic motion) occurs, 
these formal integrals of motion lose their meaning completely, as the large scale 
invariant tori no longer exist. 

Assuming that the truncated normal form is a sufficiently good approximation of 
the originla1 HamilLonian, we can immediately find the corresponding Hamilton 
operator H = H,,+ H A ,  by applying the Weyl quantisation (de Groot and Suttorp 1972) 
to it. This formal procedure might appear ad hoc at first sight, since the question of 
commutation of quantisation and classical canonical transformations is a generally 
unsolved problem. We shall return to this question in 9 6, but it should be noted that 
according to experience the resuit of quantisation of the normal form is remarkably 
close to the predictions of quantum perturbation theory. We show this for an example 
in § 7. In 9 6 we shall also consider the problem of the canonically covariant quantisation 
and the problems related to the quantum integrability. We show that under certain 
conditions the classical integrals of the normal form are also quantum integrals. 

2. The Birkhoff-Gustavson normal form 

In this section we briefly review the algorithm leading to the Birkhoff-Gustavson 
normal form, which is necessary to make the present work selfcontained, and allows 
us to derive some properties of the normal form (see Gustavson (1966); a review is 
given in Swimm and Delos (1979)). In  9 3 we give some properties of the normal 
form, such as: (1) the normal form is always an even function of momenta; (2) in 
equation (26) we give thc most general expression for the normal form; (3) in case 
N = 2 we give the system of basic variables and calculate their Poisson brackets. The 
reader familiar with Gustavson's work can skip this section. 

Consider a Hamiltonian with N degrees of freedom in the form 

r 

H ( x ,  y )  = c H'" (x, y ) ,  
1 = 2  

where x := ( x l ,  x2, . . . , x N )  are the coordinates, y := ( y , ,  y,, . . . , y N )  the momenta, and 

w k  
N 

HJX, y )  := H'"(x .  y )  = - ( X t  + y i )  
k = l  2 

is the harmonic part of ( I ) ,  with w k ,  1 4 k s A', being the oscillation frequencies. Each 
term H"' in (1) is assumed to be a homogeneous polynomial of degree j ,  i.e. 

where hkl are real constants, and we use multi-i:idices like k := (k,. k 2 ,  . . . , k N )  with 
the definitions 
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W e  say that there is an rrh-fold resonance at  the equilibrium point (x, y )  = (0, 01, 
if there are  r linearly independent commensurability conditions between the frequen- 
cies, i.e. 

N 

where i = 1 , 2 , .  . . , r, and the rank of the real matrix atk equals r. The equilibrium 
point is said to  be non-resonant if there are no rational connections (4). 

W e  now define the normal form. The Hamiltonian (1) is in normal form to degree 
s if 

Dix,y,H”’ (x, Y )  = 0 ,  ( 5 )  

for 2 js s, where the partial differential operator 

so that (5) is just the Poisson bracket { H o ,  If”!}. 
It is useful to introduce the quantities 

T k : = i ( X ;  + Y t ) ,  l s k c N .  (7) 

The following theorem is the main result of Gustavson (1966). 

Theorem (Gustavson). If the Hamiltonian (1) is in normal form to  all orders ( s  = X),  

and is represented by a formal series. then: 
(a) For an rth-fold resonance we have N - r independent formal integrals of the 

motion, 

where p/k, 1 S 1 S N - r, are the independent solutions of the commensurability condi- 
tions (4), i.e. 

In this case the Hamiltonian (1) is itself an integral independent of I k ’ S .  

the Hamiltonian (1) becomes a function of them, i.e. 
(b) In the non-resonant case we have N independent integrals T , ,  r 2 , .  . . , r,\,, and 

H = H (  T I ,  72,  . . * , 7,y). (9) 
Given a Hamilton system with the quadratic kinetic energy+ potential energy, we 

can always shift the energy scale, shift and rotate the coordinate axes x k ,  and stretch 
the coordinates and momenta in such a way that the Hamiltonian appears in the form 

H ( x ,  y )  = HI,+ 2 U ’ ” ( X ) ,  
j = 3  

(10) 

where 
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is the harmonic part, while U ” ’ ( x )  are  just the homogeneous polynomials of degree 
j arising from the Taylor expansion of the potential U = U ( x )  around the equilibrium 
point x = 0. The Hamiltonian (10) is thus a special case of (1): the anharmonic terms 
depend only on the coordinates x .  Note that (10) is an even function of momenta. 

The  question now is whether the Hamiltonian (10) can be brought ,to the normal 
form by a canonical transformation (x, y)  -+ (4, p ) ,  SO that H ( x ,  y )  + H ( q ,  p ) ,  where 
q-= ( q l , .  . . , q N ) ,  p = ( pl ,  . . . , p N )  are new coordinates and momenta, respectively, and 
H ( q , p )  is the normal form Hamiltonian, The answer is positive by theorem 1 in 
Gustavson’s work. 

Let H ( x ,  y )  from (1) be in normal form to  degree s - 1. Then there exists a 
generating function 

G‘”(x, p )  = xp+ W(’ ) (x ,  p ) ,  (11) 

where W(”(x ,  p )  is a homogeneous polynomial of degree s, such that after the canonical 
transformation 

q = x f a  W ! ’ ) ( x ,  p ) / d p ,  y = p + i r  W”’(x ,  p ) / a x ,  (12) 

the new Hamiltonian f i ( q ,  p )  is in normal form up to degree s. T o  show this consider 
first the equality 

H ( x ,  p+dW”’ /dx)  = f i ( x + a w ” ’ / a p ,  p ) .  (13) 

H”’(5.  q ) = f i ( ” ( [ ,  q), 2 ~ j ~ s - 1 ,  (14) 

From the power expansion of these expressions we see 

where (5, q )  stand for  the arguments of the functions. In other words, those terms 
which are already in normal form are not affected by the transformation. The 
homogeneous polynomial W’”( x ,  p )  determining the generating function can be so 
chosen that 

{H,,, 6”’) = D(q.p,fi(sJ(q, p )  = 0. 

i.e. that 
order s in ( 13),  whence 

is in normal form up to degree s. This can be seen by equating terms of 

(15) 

By definition fi’” must be in the kernel of the partial differential operator D!x.p l .  
Now, since D is a linear operator, it allows a unique decomposition of the space of 
polynomials into a direct sum of the kernel N and the range R. Accordingly, each 
polynomial can be uniquely decomposed into a sum of its N component and R 
component. To solve (15) we take H’” to be the N component of H“’. The solution 
for W‘” in (15) is then determined up to an arbitrary additive polynomial from N. 
To make W”’ unique we require, following Gustavson, that W‘“ is in the range R 
of D. 

Having obtained the solution- for I?‘’’ and W”’ we can calculate the remaining 
terms of the new Hamiltonian H in the power expansion of (13) .  It turns out that 
for each i = 2 , 3 , 4 , ,  . . 

D, W’ ‘I( X, p )  = H ’  ”( X ,  p )  - 6’ ”( X, p ) .  



114 M Robnik 

where the summation over j is restricted by the conditions 

/ + l j l ( s - 2 ) = i ,  1 s / j /  s 1 < i ,  1 > 2 , s 2 3 ,  

and we use the multi-index notations 

j !  := jl!j2! . . . j N ! ,  

(aw‘”/ax)’:= (dw~~J/ax,)’1 . . . (aw”’/ax,)’~.  

a l ’ l ~ ~ ’ ~ / a p ’ : = a ”  ~ “ ’ ( x , p ) / a p : ~ a p : .  . . ap:, 

One can see that for i < s we get indeed (14),  while for i = s we recover equation 
(15). All terms I?‘)’, j >  s, can be then calculated successively by the formula (16). 

By assumption H‘” (x ,  y )  is already in normal form. Consequently, by a series of 
successive canonical transformations generated by GI3’, G‘” ( . . . .  G‘ ‘ I  , . . . we can 
calculate the normal form to an arbitrary degree. 

3. The structure of the normal form 

The fact that the normal form can always be represented as in ( 2 6 )  is the main result 
of the classical part of our paper. 

We now prove the following property of the canonical transformation (1 1)-( 16). 

Proposition. If the Hamiltonian (1) is an even function of momenta, i.e. H ( x ,  y )  = 
z ( x ,  - y ) ,  and is assumed in normal form up to  degree s-  1, then the Hamiltonian 
H(q ,  p )  obtained according to the transformation (1 1)-( 16) is also an even function 
of momenta, i.e. 

a 4 ,  P )  = -PI .  

Proof. If H ( x ,  y )  is even in momenta, then H ( ” ( x ,  y) is too, and a fortiori its N 
component I?”), The RHS of (15) is thus even. Since the operator D switches the 
parity, this implies that W‘” is an odd function of momenta, i.e. W‘”(x,pl= 
- W‘”(x, - p ) .  But then for ljl even or  odd the factors in the two products in the 
bracket under the summation symbol of (16) have the parity (+,+; +, +) and 
(-, -; +, +), respectively. Consequently, each term of the new Hamiltonian is 
also an even function of momenta. 

For the Hamiltonian system ( l o ) ,  which has the usual form kinetic energy+ potential 
energy, we have the result that its normal form to any degree s is an even function 
of momenta. This will be used later on. 

Note that odd parity in momentum variables is not invariant against the canonical 
transformation (11)-( 16). Precisely analogous results apply to the parity in coordin- 
ates: even parity is preserved, but odd parity is not invariant under the canonical 
transformations. 

In order to study the structure of the general normal form we now make a 
non-canonical transformation to the complex variables 

t- 

z k  := ( 1 / d 2 ) (  xk f i y k ) ,  l < k S N ,  (17) 

x k = ( 1 / h ) ( z k + z ; ) ,  

so that the coordinates and momenta are 

y k  = ( 1 / i J j ) (  zk - z% ), (18) 
where 2% is the complex conjugate of zk. We see from (7) that 7 k  = z k z r ,  and with 
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6 k  := arg zk, we obtain 
1- 

zk =\ irk  e ' @ k ,  I s k s N .  

It can be easily seen that the operator D(x,! , )  from (6) becomes 

115 

(19) 

By definition the normal form (1) contains only polynomials from the kernel N of 
the operator D. A basis of N can be most easily determined by using the complex 
variables (1 7). Inserting (1 8) into the normal form (1) yields a power series in complex 
variables Z k ,  z ; .  But since (10) is an even function of momenta, so is its normal form 
( l ) ,  and all coefficients in the series are real. Since the series H ( x ,  y )  is real valued 
we conclude that if zmz*"  occurs in the formal series, then its complex conjugate 
z * ~ z "  must d o  so with the same real coefficient. Here  we used again the multi-index 
notation z = ( zl, z 2 , .  . . , z N ) ,  m = ( m , ,  m,, . . . , m N ) ,  etc. 

The  monomials zmz*"  in the kernel N of the operator D given in (20) a re  
determined by 

0, ~ ~ ~ n ~ * ~ ~  = 

whence 
N 

w ( m - n ) =  Wk(mk-nk )=O.  
k = I  

This condition implies that mk - nk, 1 C k C N, must be a linear combination of the 
rows of the commensurability matrix alk, 1 c 1 c r, given in (4). To simplify the 
expressions we assume that each row vector ( a , , ,  . . . , a I N )  = ai has integer components 
without a common factor. From (21) we obtain 

r 

m - n  = C y p c ,  
f = 1  

where y, are  non-negative numbers. Note that the integer vectors af can have negative 
components. It is not very convenient to write 

Z n l Z * n  = r n z L ; = ,  Y ! " ,  

because negative powers of i can appear in the second factor. Instead, we introduce 
the resonant monomials 

where 

It can be easily seen that DK, = 0, i.e. K,, 1 s Is r, are  constants of the motion of the 
harmonic part Ho = W k Q .  Writing 

y :=  ( Y l , .  . . I 7,) and K := ( K ] ,  . ' . 1 Kr) ,  (25) 
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we obtain the most general expression 

H ( x ,  Y )  = C f , ( d ( K ' + K * ' )  (26) 
Y 

for the normal form ( l ) ,  where f Y ( 7 )  is a real polynomial. The summation runs over 
all non-negative integers y = ( y l , .  . . , y r )  and K Y  = K : ' K i 2 . .  . K y  etc. We see that 
the normal form is generally a function of the variables T = ( T ~ ,  T ~ ,  . . . , q,) defined in 
(7) and K = (Kl,  K 2 , .  . . , K r ) ,  as defined in (23)-(25). In the non-resonant case r = O  
and H depends only on T,  which are thus action variables. 

We shall call {Ho, 7, K,  K * }  the set of basic variables since the normal form can be 
expressed as a function of them. By definition each basic variable commutes with Ho 
(Poisson bracket vanishes). It can be shown that they form a closed system in the 
sense that the Poisson bracket for any pair is a polynomial of basic variables. The 
Poisson brackets can be easily calculated by using the expressions 

{ z t ,  zl}(x,y)  = i h  {Zk, Z 1 h x . y )  = { Z k ,  Z l } ( x . y )  = 0. (27) 

Let us specialise to two degrees of freedom, N = 2, assuming r = 1 ,  a, = (a l l ,  u12) = 

{ T ~ ,  K * }  = -it&*, 

( t 2 ,  - f l ) ,  i.e. w l / w z  = t l / f2 .  Then the Poisson brackets of {H,,, T ~ ,  T ~ ,  K ,  K * }  read 

{ T ~ ,  K}=it,K, 

{ T ~ ,  K }  = -itlK, { T ~ ,  K * }  = +it,K*, 
t,-1 r - 1  {K ,  K*}  =iT1 T ;  ( 6 ~ ~  - f 5 ~ * ) ,  

The normal form (26) equals ( y = yl )  

from which we can derive an additional property: in the case of an even order resonance, 
i.e. I f l l+ l f21  =even integer, T ~ ,  T ~ ,  K are monomials of even order in variables x, y. 
Consequently, for an even order resonance, such as w 1 / w 2  = 1, or w I / w 2  =$, the normal 
form H ( x ,  y )  in (1)  contains only even order terms, i.e. H"'(x, y )  = 0 if j is odd. 

4. Some examples 

In this section we calculate the general normal form up to degree 4 for systems with 
two degrees of freedom, N = 2. The non-resonant case is considered first, and then 
we treat the case of the lowest-order resonance w I / w 2  = 1.  In both cases we give 
explicit results for two special potentials, one of them being the Htnon-Heiles potential 
(1964). 

A warning is in order here: while the examples in this section are still calculable 
by hand, the higher-order normal forms are not. Even for N = 2  the calculation of 
the eighth-degree normal form involves polynomials of order 495 and 495 X 495 
matrices must be inverted. For this reason one uses a computer for symbolic algebraic 
manipulations. This procedure is usually still partially numerical (cf Gustavson 1966, 
Swimm and Delos 1979), but we have done completely symbolic calculations using 
the REDUCE programming language (Schrufer and Robnik 1983). The examples of 
this section were used to test the computer routines. 
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We assume the Hamiltonian (10) in the form 

H = ~ 1 7 1  ~ 2 7 2  + u'3'(X1, X2) + u(4)(X1, Xz), 

U ( 3 )  = ax: + bx:x2+ cxlx: + dx:, 

U(4) = AX;' + Bx:x2 + CX:X: + Dx,x: + EX:, 

where w l / w 2  # 4, 2. First we calculate the polynomial, 

(30) 

W ( ~ ) ( X ~ ,  x2, pl, p2) = C W(klmn)x:x:p;"p;, (31) 

Q X # )  w'3' = (32) 

k + l + m + n = 3  

whose coefficients are determined by (15). Now, since fi{;,\) = 0, we have to solve 

After a straightforward and lengthy calculation we obtain the coefficients 

W(0030) = 2a/3w1 = u l ,  

W( 11 10) = b/2w,(  1 - W ; / ~ W : ) = :  M = 213, 

W ( 0 0 0 3 ) = 2 d / 3 ~ 2 =  ~ 2 ,  

W( 1101) = c/202( 1 - w:/403 =: N = u4, 

W(2010) = a / w 1 =  us, w(0201) = d / ~ 2 =  U.5, 

W(2001) = ( ~ 1 / ~ 2 - ~ 2 / 2 ~ 1 ) M =  ~ 7 ,  w(0210) =(W2/@1-W1/2W2)N= 08, 

W(0021) = w ~ M / w ~  = ~ 9 ,  

while all other coefficients vanish (tenpf total 20 coefficients). 
The next step is now to calculate H ' 4 ' ( ~ ,  p). Using (16), 

W(0012) = w 2 N / w l  = ul0 ,  

(33) 

we obtain the coefficients h(klmn) of 

f i (4 ) (x ,  y) = C h(klmn)x:x:yry:, 
k + l + m + n = 4  

(35) 

listed in table 1. There are 19 non-zero and 16 vanishing coefficients. Having done 
this the fourth-degree normal form H ' 4 ' ( ~ ,  y) is equal to the N component of (35). 

H = wi  71 + U272  -t g20d 

We shall write the normal form as in the standard expression (291, i.e. 

gi 1 7 1 7 2  8,2722 + ( Y i  71 + ~272)(K + K * )  Y ~ ( K ' + K * ~ ) ,  
(36) 

K = z l d  = t [ ( x l ~ 2 + ~ 1 ~ 2 ) + i ( x 2 p l - x l p 2 ) l  (37) 

K 2  + K*2 = tKx1x2 +P1P2)2 - (X2P1- xlP2)21. (38) 

where 

so that 

K + K *  = x1xz+p1p2, 

The w 1 / w 2 =  1 resonance is the only one affecting the fourth-order normal form. 
(w1/w2=$, 2 has been excluded by assumption. This would change already the 
third-order normal form.) In this case yl, y2 and y 3  (which should not be confused 
with the summation index y in (29)) have to be determined with w 1  = w2 = w,  while 
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in all other cases y3 = y2 = y ,  = 0. The easiest way of finding the coefficients of normal 
form ( 3 6 )  is to use the complex variables. We distinguish between two cases. 

(a) The non-resonant case and higher-order resonances ( w I / w 2  # f ,  2, 1) 
The result is 

g2, = $h (4000) + h (2020)  + 2 h (0040) ,  

g11= h(2200) + h(2002) + h(0220) + h(0022) ,  

g,2=qh(0400)+~h(0202)+~h(0004), y1 = y2 = y3 = 0. 

(b) The lowest-order resonance, w I  = w2 
The coefficients g,,, g , , ,  go, are as in ( 3 9 ) ,  while 

y1 = i h(  3 100) + i h  (003 1) +ah( 201 1 )  + ah( 1 120),  

y 2  = ah( 1300) + 1 h(O0 13) + $h(  1 102) + a  h(021 l ) ,  

7 3  =ih(2200)  - $ h  (2002) -ah(O220) t ih (0022)  +ah( 1 1  1 1 ) .  

( 3 9 )  

However, we choose w 1  = w 2  = 1 without loss of generality. The coefficients 
u l ,  u 2 , .  . . , u l 0  in (33)  simplify considerably and we obtain the coefficients h(k1mn) 
given in table 2. With this result we can write (39)  and (40)  explicitly in terms of the 
original potential (i.e. its Taylor coefficients) in ( 3 0 ) ,  

g2, = ;(A - $a2 - b'), g , ,  = C - f ( b 2 + c 2 ) - 3 ( a c + b d ) ,  

y1= $ ( B  - y b  ( a  + J c)), ( 4 1 )  go, = $ ( E  - $d2 - 5 2 
1 R C  1, 

y2 = $( D - ?C( d + f b ) ) ,  y3 =a(  C - 2( b2+ c 2 )  + uc + bd).  

The formulae (39)-(41) are general. It is useful to consider two specific systems, which 
will be used also in subsequent sections, where the quantisation is studied. 
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Table 2. The coefficients of table 1 when w ,  = w 2  = 1 

h (4000) = A - f( a + $ b 2 )  
h(0400) = -$($c' + d 2 )  
h(0040) = -2ia2+bb2) 
h(0004) = E  -2($c2+ d 2 )  
h(3100)  = B - j b ( a  + $ c )  
h(0031)  = - f b ( a + i c i  
h(0013)  = - $ c ( & b + d )  
h( 1300) = D -;c(fb + d )  
h(2200)  = C -$(2b2 + 2c2 + 3ac+ 3bd)  
h ( 2 0 2 0 ) = 0  

h(2002)  = $ ( b 2 +  c 2 -  3 ~ c  - 3bd)  
h(0220)  = $ ( b 2 + c 2 - 3 a c - 3 b d )  = h(2002)  
h(0202)  = 0 
h(0022)  = -$(2b2 + 2 c 2 +  3ac + 3bd)  
h(2011)  = 0 
h ( l 1 0 2 )  = 0  
h ( 1 1 2 0 ) = 0  
h ( 0 2 1 1 ) = 0  
h ( l l l 1 )  = -$(b2T c2-3ac - 3bd)  = -2h(2002)  

Example 1. (w1/w2 f 1 / 2 , 2 , 1 )  

Let c and C be non-zero, while all other coefficients of U t 3 '  and U"' in (30) vanish. 
The normal form up to the fourth degree according to (39) reads 

Example 2. ( w l  =w2  = 1): 

We take the HCnon-Heiles system (1964) b = A, d = A V  (all other coefficients of U''' 
and U'4' vanish) as an example of a resonant case (see also Gustavson 1966, Swimm 
and Delos 1979). The result follows directly from (41), 

i.e. the normal form up to degree 4 of the HCnon-Heiles system reads: 

H ( x ,  y )  = $ ( x :  + y:) +:(x: +- y : )  - A'{ &[ i (~f  + Y:)]~  + (:+ 37)[:(~: + y : ) ( x f  + y i ) ]  

+ Y V % ( X i  + Y 3 I 2  ++cl - t v ) [ ( X , X * +  Y ,  Y')* - (XZYI  - x lv*)21~.  (44) 

In the special case A = 1, 7 = -4 we have a complete agreement with the coefficients 
in Gustavson's numerical example (1966). (As can be verified, the fourth-degree 
coefficients from Gustavson's table I1 are exactly reproduced.) However, comparison 
with the example by Swimm and Delos (1979), where A =0.0125 and 7 =-f, shows 
that their coefficients g,,,, g , , ,  goz, y7 as given in their equation (29) ar_e correct if 
divided by a factor 8. In other words, their equation (29) refers to A =J2/40  rather 
than to A = 1/80. Similarly, the coefficients of their fourth-degree normal form r(4) 
as given in their equation (33b) are correct if divided by a factor 80, i.e. they 
actually refer to A = 1/& but not to A = 1/80 as they claimed there. 

5. The algebraic quantisation of the normal form 

The philosophy of the quantisation method presented in this work is simple: suppose 
the normal form (1) of a given system (10) is known, and assume (non-trivially) that 
the quantum operators corresponding to the coordinates x and momenta y satisfy the 
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canonical commutation relations, i.e. 

[ ik, A] = ih&. (45) 

Then one has to determine the Hamilton operator fi = fi, + gA corresponding to the 
normal form, and finally to find its energy eigenvalues. 

To quantise the normal form means that we must assign an operator to the normal 
Hamiltonian. Because the normal form is written as a formal series of (multi- 
dimensional) monomials, this procedure is feasible only if the quantisation scheme is 
linear; In other words, the map W:f-.f, where f is a classical phase spsce function 
aTd f is the corresponding Hermitian operator, should be linear, i.e. W (  uf + bg) = 
uf+ bg*. There are a number of different linear quantisation schemes, e.g. the Weyl 
rule, the Born-Jordan rule, the symmetrisation rule, etc. Although it might be argued 
that Weyl’s rule is the ‘best’ (Springborg 1983), this does not remove the fundamental 
djfficulty. Namely, the fact remains that there does not exist a linear quantisation map 
W which preserves the Poisson structure. (See Abraham and Marsden 1978, Castellani 
1978 and references therein.) This implies that no linear quantisation can be canonically 
covariant. The property (45) holds only in special coordinate systems in phase space, 
and changes with the (general) canonical transformations of these coordinates. Strictly 
speaking, we do  not know in which system (45) holds, but it can be argued that this 
is the case at least when the Hamiltonian is in the usual form ‘quadratic kinetic 
energy+potential energy’. Our assumption that (45) is satisfied for the normal form 
is thus indeed non-trivial and must be regarded as a working hypothesis. 

We describe now our quantisation method. To begin with let us recall that the 
normal form H ( x ,  y )  = H,(x, y)+H,(x ,  y ) ,  where 

is its anharmonic part, is an infinite sum of multidimensional monomials in coordinates 
and momenta, i.e. 

H =  1 h(mon) x k y ‘ ,  
mon 

(47) 

where k = ( k l ,  . . . , k N )  and I = . . , IN )  are non-negative integers. The problem 
W :  H -. & will be solved if we deterFine the operators corresponding to each of the 
monomials in (47). We assume that W is the Weyl correspondence rule (see the useful 
study of this in the book by de Groot and Suttorp (1972)). The following comments 
are essential for subsequent developments. 

(C1) Contrary to a claim by Korsch (1982) W does not preserve the commutation, 
in general (cf Hietarinta 1982). Thus if the Poisson bracket {f, g} vanishes, then the 
quantum commutator [ 6’(f), W(g)] =[i g*] does not vanish, in general. Example: 
f = qp’, g = q’a4 = f 2 ,  so that {f, g} = 0. It can be shown by using either the general 
definition of W inv-olving the Moyal brackets, or by the algebraic rule for polynomials 
(see below) that [f, g*] = -2ih3B3 f 0. 

(C2) 6’ does not satis9 the so-called squaring axiom (Wan and McKenna 1982). 
Thus in general @ ( f 2 )  # f’. This can be inferred from the above example: if ĝ  were 
equal to f 2  then the commutator [f: $1 woyld vanish. Moreover, even if f and g a;e 
such that { f, g} = 0 and accidentall? also [f, i ]  = 0, then g =f’ does not imply = f’. 
Example: f = qp, g = f‘ =q:p’ and f = @-ih/2, ĝ  =Q2$2-2ihQ$+(ih)2/2 =f2-h’/4,  
so that [ f, ĝ ] = 0, but g* = W (  f’) # f’. 
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The failure of the squaring axiom is known as Temple's paradox (Temple 1935), 
and is the uneleasan; property of every linear quantisation scheme. That is to say, the 
linearity of W : f + f is incompatible with the squaring axiom. There are arguments 
(Wan and McKenna 1982) that linearity should be dropped under certain conditions. 
From the practical point of view the failure of the squaring axiom implies severe 
difficulties in calculating the operators of the monomials of the normal form. 

(C3) If f is a product of functions f l  and fi, each of them depending on coordinates 
and *momenta of, dice:ent degrees of freedom, (i.e. f is factorially separated), then 
[ f ~ ,  f2] ' 0  and f = flf2. Hence, in this special case the factorisation is satisfied: the 
image W (  f l f2 )  of a product of fun5tions depeFding p n  different degrees of freedom 
is equal to the product of images, W(flf2) = W(f l )  W(f2).  

(C4)  Among all linear quantisation rules the Weyl rule is distinguished by the 
covariance under the linear canonical transformations (Springborg 1983). 

The property (C3)  implies that the operator W ( x k y l )  corresponding to a monomial 
of ( 4 7 )  is decomposed into a product of operators corresponding to each degree of 
freedom, 

( 4 8 )  

For one degree of freedom the Weyl rule is given by the formula (in usual notation) 

W ( x k y ' )  = W ( x : y ; 1 ) .  . . W ( x f j y y h ) .  

or using the normal operator ordering (4 precedes e) ,  

In principle, equations (48)-(50) solve the correspondence problem H + fi. The 
normal form for two degrees of freedom of order 8 has 495 monomials, and if each 
of them is mapped into a series of the form (50) ,  containing about 100 terms, then 
this approach would be useless. It is thus necessary to find another representation, or 
to introduce approximations, or both, as we shall do. 

The complex variables zk and their conjugates 2;  correspond precisely to the 
annihilation and creation operators, i.e. 

2, = W( z k ) ,  2; = ' c i / (z;) ,  ( 5 1 )  
and their action on the eigenstates Inl , .  . . , n N )  of the harmonic operator fi0 is 

i k l n l , .  . . , n k , .  . . , n N ) = J h n k / n I , .  . . , n k - l , .  . . , n N ) ,  

211nl , .  . . , nk, . . . , n N )  = J h ( n k  + l ) / n , ,  . . . , nk + 1 , .  . . , n N ) ,  
( 5 2 )  

where 

with E,  being the energy eigenvalues of fro. The complex canonical variables ( z ,  iz*) 
thus seem to be more convenient than (x, y ) .  Indeed, from ( 2 7 )  we see that they are 
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canonically conjugate, 

{ z k ,  i t ? } =  8 k l .  (54) 

Since they are related to (x, y )  by the linear canonical transformation obtained from 
(1 8) upon multiplying by i, we can do the quantisation in this complex representation 
because of the property (C4). 

We now show that the quantised normal form has the same fundamental property 
as the classical ope, cf equations (5)-(6). Nam$y each monomial commutes with tke 
harmonic part H,, of the Hamilton operator H. Therefore the anharmonic part HA 
of the normal Hamiltonian, when quantised according to Weyl's rule, commutes with 
Go, and is thus diagonal in a harmonic basis. In 0 6 we show that the integrability 
properties (5)-( 6) are preserved under the quantisation. 

Each monomial of the normal form, when represented in complex variables z ,  z*,  
can be written as z ' " z * ~ ,  where w ( m - n ) = O  (see (21)), which is equivalent to the 
vanishing of the Poisson bracket {H,,, z ' " z * ~ } .  Now 

N N 
Ho= ojzjzT = 1 wjrj, 

1 = 1  j = 1  

and thus by applying (50) one has 

whence 
l$(r,) = @ ( Z j Z T )  = iT2j+j f l ,  

N 
W k ( i t f k + i h ) .  

k = l  

( 5 5 )  

By a straightforward calculation one can show that for one degree of freedom 

[ l$( Z F k Z z n k ) ,  l$( z k z z ) ]  = ifl( m k  - n k )  l$( zFkzrnk) .  

By the property (C3) and the definition ( 5 5 )  we obtain the fundamental commutation 
relation of the quantised normal form, namely 

[fro, @ ( z m z n ) l  = ihw(m - n )  ~ $ ( Z ~ ' Z * ~ ) .  (57) 

This vanishes if and only if o( m - n )  = E;='=, wk( m k  - n k )  = 0,  which i s  precisely the 
property of theAmonomials of the classical normal form. Hence, HA does indeed 
commute with Ho. 

In this manner we can solve the quantisation problem H + fi by first expressing 
fi in terms of the complex variables, and then quantising it term by t5rm according 
to Weyl's rule. Taking into account the relation (51) we end up with H expressed in 
terms of creation and annihilation operators i k ,  il, k = 1,. . . , N. 

The normal form expressed as a function of z, z* is obtained from the general 
result (26) by inserting the definition: of T/ and Kl.  The operator corresponding to 71 

is given in (55). Let us calculate W ( K , ) .  From the definitions (23)-(24) follows 
immediately 

(58) k, = ;pll . . , ; l 4 ,  N 

where 
if a l k  3 0 ,  
if a l k  < O .  

By ? = (7*, , . . . , ? N )  and 2 = (k,, . . . , k,) we denote the vectors of operators. 
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Because the squaring axiom is not s$sfied (property (C2)), it is by no mean: 
sufficient to know the operators F and K. The only consistent way of calculating H 
cannot avoid the application of @ to each individual normal monomial zmz*". But 
this results in an explosion of the expressions, which, after all, are not exact, because 
of the ambiguity in the fundamental problem of the quantisation scheme. Our goal is 
to obtain an algebraic quantisation algorithm which yields a good approximation for 
the spectrum, but is at the same time easy to handle. For this reason we now make 
a drastic approxiAmation: we force the squaring axiom to hold; That is to say, we first 
calculate F and K by using the Weyl rule, but then calculate H by inserting them into 
the expression (26) as if the squaring axjomjs satisfied. Note the important fact that 
the fundamental commutation relation [H,, H A ]  = 0 of the normal form is not destroyed 
by this approximation. Note also that this approximation is not necessary from the 
theoretical point of view, but is introduced to facilitate practical applications of the 
method. It is a reasonable assumption until a solution to the general quantisation 
problem has been found. 

Let us now work out the implicatiop of this approximation. First of all we can 
immediately write down the operator H in terms of ? and I?, cf (55) and (58)-(59). 

In non-resonant cases we have 

The energy spectrum is then simply given by 

where il = ( n l , .  . . , n N )  are non-negative integers (quantum numbers). The result is 
thus equivalent to the tori quantisation. 

Example. For the fourth-degree normal form of example one in 0 4 (see (42jj ,  we 
get thus the energy spectrum 

n I n 2 = 0 , l , 2 ,  . . .  

Unlike in non-resonant cases, wher: AA is already diagonal in the harmonic basis, 
in resonant cases fiA depends also on K. Because I?, is asymmetric product of 2, apd 
2; (differe2t powers), HA is not a priori diagonal in the simple harmonic basis of Ho. 
Note that Ho has degenerate spectrum in the resonant case. An eigenspace of 12" has 
the dimens@ equal to the multiplicity U of the eigenva1ue;s E, , ! ,  ,,,. The eigenvalues 
A,, ,, of HA are obtained [f each block matrix (n; . . . n,/HA/nl . . . n N )  corresponding 
to a (finite) eigenspace of Ho is diagonalised. Let us label ',he eigenvectors within an 
eigenspace by m = 1 , 2 , .  . . , v. Then the eigenvalues A of HA are the solutions of the 
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det 

secular equation 

det( A6,,,,,,# - (m IfiAIm')) = 0,  (64) 

which completes the algebraic quantisalfion algorithm. 
However, in the generic case that HA contains non-vanishing diagonal operators, 

i.e. if fy=(o,o,...,o) # 0 in (262, then we can use another, much more convenient, selitting 
of fi. Namely, we write H as a sum of all dia$pnal operators summarised in HD and 
the non-diagonal (resonant terms) operators HR, i.e. 

A = Z ? D +  Ei,, ( 6 5 )  
such that fiD is diagonal on the harmonic ba$s Inl , .  . . , nN) ,  but no longer degenerate, 
as we included the anharmonic terms, while HR contains all terms depending on powers 
K". 1n:his event we are allowed to use the no!-degenerate perturbation theory, 
taking HD as the unperturbed system and treating HR as a perturbation. We then have 

A-ah2(25g20+5g,i+go2) 0 -2 Y3h 

0 A - $h2(g20 + g, 1 + g02) 0 
-2y3h 0 A-ih2(g20+5811 +25g02) 

A 

where n := ( nl ,  n 2 , .  . . , n N )  and On denotes the eigenvalues of HD. The first-order 
term vanishes because the diagonal elements ( n l ~ " K ~ l n )  vanish if the monomial 7"KP 
is an asymmetric (in exponents) product of annihilation and creation Operators. 
However, the formula (66) has a disadvantage that infinite matrices and their powers 
must be evaluated, while the procedure (64) involves only finite operations. We give 
now an example based on application of equation (64). 
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table 3.  The present method seems to be as accurate as perturbation theory, and much 
more accurate than the usual semiclassical quantisation. 

Table 3. The lowest energy levels for the Hhon-Heiles system with A =&, 7 = -f. h = 1. 
We compare the results obtained by the present method (a) according to (67)-(71), with 
the results by Weissman and Jortner (1982): (b) ‘exact’ values, (c) quantum (second-order) 
perturbation theory, (d) the semiclassical quantisation. 

Eli 0.998 7500 0.998 88 0.998 89 0.995 83 
E2 1 1.992 0833 1.992 1 1.992 2 1.989 2 
E33 2.965 4167 2.965 1 2.965 6 2.962 5 

2.988 7500 2.988 40 2.988 9 2.985 8 

In an erratum Swimm and Delos confirm that the results given in their table11 
(1979) do indeed refer to A = 1/&, (not A = 1/80) so that we are able to compare 
their results with predictions of the present method. Table 4 clearly shows the excellent 
accuracy of the present method: note that we have quantised the fourth-degree normal 
form while Swimm and Delos took eighth degree, and yet our results are much more 
accurate. 

Table 4. The lowest energy levels for the Henon-Heiles system with A = l /&, 7 = -4, 
f i  = 1. We compare the results obtained by the present method (fourth-degree normal 
form) (a) with the ‘exact’ quantum mechanical calculations by Noid as listed in Swimm 
and Delos (b), the tori quantisation results (eighth-degree normal form) by Swimm and 
Delos (1979) (c), and the semiclassical results by Noid and Marcus (1977) (d). 

E ,  I 0.998 4375 0.9986 0.9947 0.9947 
E2 1 1.990 1042 1.9901 1.9862 1.9863 
E33 2.956 7708 2.9562 2.9506 2.9506 

2.985 9375 2.9853 2.9814 2.9815 

We summarise, and stress the major steps of the quantisation method when applied 
to specific examples. 

(i) For the given (classical) Hamiltonian (10) one has to calculate the normal form 
(26) to the desired order, using the algorithm of 9 0  1 and 2. 

(ii) The basic variables T = ( T ~ ,  . . . , T ~ )  and K = (Kl , .  . . , K,)  are then replaced 
by their Weyl correspondents 7  ̂ and k, which are further expressed in terms of the 
ladder operators according to ( 5 5 )  and (59). 

(iii) In the non-resonant case the energy spectrum is obtained simply by replacing 
Tk by ( n k  +&h,  where nk =0, 1 , 2 , .  . . are the quantum numbers, 1 s k s N .  So, no 
operators are needed here to calculate the energy levels. 

(iv) In the resonant case one has to diagonalise the anharmonic part fiA of the 
normal Hamiltonian in the finite subspaces of the harmonic operator. Thus by solving 
tQe eigenvalue problem (64) for each 2f the finite subspaces we find a basis so that 
HA is diagonal and the degeneracy of Ho on the subspace is removed. 
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6. Problems related to the quantum integrability 

Let a quantum mechanical system be determined by the Hamilton operator 

fi = fi(4, a) ,  (72) 

where 4 = ( d , ,  , . . , d N ) ,  9 = ( a , ,  . . . , f i N )  obey the canonical commutation relations 

W e  define A to be integrable if there are N (=number  of degrees of freedom) 
independent, mutually commuting observables 

F, = F I G  $1, l S i S N ,  PI, F,I = 0, (74) 

one of them, say i,, being the Hamilton operator itself, and each of them being a 
function of the operators 4 and 3. (We thus exclude observables related to  discrete 
symmetries.) 

Defined in this way, the integrability is a purely quantum mechanical property and 
can be in principle investigated by the theories on algebras of operators in the Hilbert 
spaces, without reference to  classical mechanics. However, little is known on the 
general integrability properties of quantum systems. The question is important, as it 
is related to the existence of the (exact) quantum numbers: if a system is integrable, 
then it has N quantum numbers. If it is not integrable, then the question arises, how 
many exact quantum numbers exist. 

The problem in its whole generality cannot be solved unless the basic problem of 
the quantisation prescription is solved. The solution of the latter will at the same time 
enable us to study also the correspondence between the classical and quantum integra- 
bility. In view of the enormous difficulties that we face the following question is of 
heuristic importance: what does the classical integrability imply for the corresponding 
quantum system? The classical integrability is somehow better understood, albeit no 
general decision or construction algorithm for integrable systems is known to date (see 
Holt 1982) .  One should not forget that the results and conclusions of such investigations 
are depzndent on (and probably sensitive to) the choice of the correspondence rule 

With this in mind I present now some partial results on the quantum integrability. 
Let ( 2 6 )  be the normal form of a classical Hamilton system (10). The infinite formal 
series of the normal form can accidentally terminate. (The exact condition for termina- 
tion is not known, but it can be seen from the strong coupling of terms through equation 
( 1 6 )  that this is a rare event. If each term H"', j >  21, should vanish, then this imposes 
conditions on all terms for which r < j <  21.) If this happens then the Hamilton system 
(10) is integrable. We now show that if (A) the operators of the normal variables 
( x ,  y )  satisfy the commutation relations (45),  and if (B) * :f + f is the Weyl correspon- 
dence rule, then the corresponding normal Hamiltonian has quantum integrals which 
are precisely the Weyl correspondents of the classical integrals (7) and (8) ,  for the 
non-resonant and resonant case, respectively. 

To show this we use the complex representation, which is permitted by the property 
('24). Then the classical normal Hamiltonian reads 

@:f+f. 
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In the non-resonant case m = n, (zr*)" = T;"I . . . T;V*, and it is thus sufficient to show 
that 

[k, G,,l = 0 (76) 

for any i , j = O ,  1 , 2 , .  . . , where 

= @( 4 k p i )  

is the Weyl correspondent of the (one-dimensional) monomia! qkp' .  But (76) can be 
verified by applying the formula (50). The operatPrs <k = W(2ki- f )  thus commute 
with each @ ( z $ z r l )  = @(T;), and therefore with H = W ( H ) .  

In the resonant case we have to show that for each 1 c 1 N -  r, 

commutes with l?. But this follows immediately, mutatis mutandis, from (57): instead 
of the factor w ( m - n )  or the RHS of (57) we obtain 

Since m k - n k  is a linear combination of the rows of the matrix ark (cf (4) and (22)),  
the factor (78) is zero. Therefore (77) are the quantum integrals of the motion, since 
they commute with l? and among themselves. 

7. The relation to quantum mechanical perturbation theory: an example 

Consider the Hamilton system 

H = $ w , ( x :  + y : ) + f w , ( x :  + y ~ ) + c x , x : + c x ~ x : .  (79) 

Its normal form has been given in (42) and the resulting energy levels in (63). Let us 
now compare this result with the purely quantum mechanical perturbation theory as 
applied to the original system (79). Then we have (up to the second orderin W )  

The calculation of (80) is straightforward and the result is surprisingly close to  the 
spectrum (79) of the normal form. Namely, ( to the second order in h )  they differ only 
by an additive constant of order h2,  i.e. 

En, .,(Birkhoff-Gustavson) - En, . -  .,(perturbation theory) = &czh2 w l /  ( w :  - 4 ~ : ) .  

(81) 
The question is now which approximation is closer to the (unknown) exact result. 
Such a comparison is possible in one-dimensional cases, N = 1. Clearly, Birkhoff- 
Gustavson normal form for these integrable systems is just an algebraic method of 
the power expansion of the Hamiltonian in terms of the action variable. A similar 
result has been obtained for them: (to the second order) the spectra differ only by an 
additive constant. If the results are then compared with exactly soluble systems it is 
found that in the case of the Morse potential the additive constant incidentally vanishes 
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and both results are exact. However, in the case of the potential U ( x )  = a / x  + b / x 2  
we find that the Birkhoff-Gustavson spectrum is closer to the exact result than the 
perturbation theory. 

8. The transition probabilities 

The important achievement of the present quantisation method is that we are able to 
calculate the matrix elements and therefore the transition probabilities for electromag- 
netic transitions. This is an advantage of the method as compared with a purely 
semiclassical tori quantisation (cf Swimm and Delos 1979). 

We remind the reader that by the quantisation procedure of 0 5 we get simul- 
taneously also the eigenstates, which are finite linear combinations of the simple 
harmonic functions. For example, to calculate the dipole transitions, we have then to 
know the matrix elements 

where the initial and the final states qI and qf are finite linear combinations of states 
Inl , .  . . , nN) .  To calculate (82) one has to express the dipole term r as a function of 
the normal coordinates and momenta (by inverting the canonical transformations), 
r = r ( x ,  y ) ,  and then to express x ,  y in terms of the annihilation and creation operators. 

9. Discussion and conclusion 

In this work we have reviewed the algorithm leading to the Birkhoff-Gustavson normal 
form for Hamiltonians that can be power expanded around an equilibrium point. We 
have found the most general expression for the normal form and derived some of its 
properties. The algebraic quantisation has been achieved by means of the Weyl 
quantisation rule, and the normal form Hamiltonian has been expressed in terms of 
the annihilation and creation operators. This allows us to calculate the energy levels, 
and the transition probabilities. We gave several analytic examples, including the most 
general solution for the fourth-degree normal form for two degrees of freedom (the 
resonance w l / w z  = 4 being excluded). We further compared the results with numerical 
works by Gustavson (1966), Swimm and Delos (1979) and Weissman and Jortner 
(1982). Finally, by means of an example, we compared the energy levels obtained by 
the present method with the predictions of the (second-order non-degenerate) per- 
turbation theory, where a surprisingly good agreement has been found. 

It remains to comment on the non-integrability and stochasticity. As pointed out 
in the introduction, the absence of classical integrals of motion is related to the 
divergence of the perturbation series. The consequence is the instability of trajectories 
and the onset of chaotic behaviour, which fully develops at the critical energy (stochastic 
transition). At energies above the critical energy the formal integrals of motion have 
no meaning, while below the stochastic transition they provide a good analytical 
approximation for the invariant tori. 

The consequences of non-integrability in quantum mechanics are not so clear and 
are still discussed (Berry 1982, 1983, Zaslavsky 1981, Robnik 1981, 1982a, b). We 
consider here the stationary problem. For the classical integrable Hamiltonian systems 
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we have the well known tori quantisation, initiated by Einstein and further developed 
by Maslov. In non-integrable cases one uses the Feynman path integrals to evaluate 
the semiclassical propagator in order to calculate the level density. This turns out to 
be given by a sum over closed classical orbits (Gutzwiller 1978, Berry 1983, Zaslavsky 
1979, Berry and Tabor 1976, 1977). 

One of the most important consequences of a stochastic transition (integrable + 

non-integrable) is a drastic change of the probability density P ( S )  for the spacings S 
between two adjacent energy levels. In integrable systems, where level crossings are 
allowed, we have a distribution of uncorrelated objects and P ( S )  = exp(-S) is a Poisson 
distribution, showing that P( S )  + constant # 0 as S + 0. For sufficiently chaotic systems 
(say, K-systems) the levels repel each other, their crossings are forbidden, implying a 
strong correlation. As a result of this P( S )  is a Wigner-type distribution, i.e. P( S )  0; 
exp(-S2) for S>> 1 and obeys a power law P ( S )  + S ”  as S + O ,  reflecting the fact that 
level crossings are not allowed. The goal of the theory is to predict the critical exponent 
Y by deriving it from the dynamical properties of the system rather than by using some 
randomness hypothesis for the matrix elements of the Hamiltonian. 

Such a stochastic transition in the distribution of level spacings has been known 
observationally in nuclear and atomic physics for quite a long time (see e.g. Rosenzweig 
and Porter 1960). The stochastic transition in an interesting class of plane billiards 
with analytic boundaries has been investigated recently (Robnik 1983). It is somehow 
urgent to further develop the theory. 

There is another property of the energy levels related to the classically integrable 
or chaotic motion, which has been predicted by Percival (1973) and observed by 
Pomphrey (1974): levels corresponding to the regions of the phase space with integrable 
motion are stable with respect to the parameters of the Hamiltonian, while levels 
corresponding to the chaotic classical motion are unstable. They are called regular 
and irregular levels, respectively. A purely quantum mechanical stability theory of 
the spectra of Schrodinger operators (Vock and Hunziker 1982) now in progress might 
provide a rigorous confirmation of Percival’s semiclassical prediction (cf Robnik and 
Zaslavsky 1983). It should be noted at this stage, however, that according to the 
recent calculations by Weissman and Jortner (1982) there is no evidence for the 
irregular, unstable levels for the HCnon-Heiles system, in contrast to the observations 
by Pomphrey (1974), where the spectrum is “condensed’ due to the ten times smaller 
value of the coupling parameter A. Therefore Pomphrey’s system is closer to the 
classical limit, as has been pointed out by Noid et a1 (1980). 

There is a connection between the two properties, the common origin of both being 
the crossings or repulsions of levels. Namely, as a result of level repulsions the energy 
levels as a function of some parameter of the Hamiltonian do  not change smoothly as 
would be the case for an integrable system. The instability of levels and the stochastic 
transition of the distribution P ( S )  must be therefore related to the divergence of the 
quantum mechanical perturbation series: if the series were convergent, then the energy 
levels would be smooth (in fact analytic) functions of the parameters. Consequently, 
the energy levels as predicted by the quantisation of the Birkhoff-Gustavson normal 
form can be accurate as long as the exact levels are stable, regular. In regions of 
irregular levels the quantisation of the normal form can hardly predict the fine structure 
of the spectrum, but it very likely does predict the mean level density correctly. To 
derive the distribution P ( S )  there one cannot avoid solving the basic problem of 
predicting P( S )  by the true dynamical properties of the Hamiltonian, or calculating 
P ( S )  by using the exact energy levels. 



130 M Robnik 

Acknowledgments 

I wish to thank Dr Eberhard Schrufer (University of Bonn) for valuable comments 
and many stimulating discussions. Helpful comments by R A Marcus are gratefully 
acknowledged. Finally, sincere thanks are due to George M Zaslavsky for stimulating 
discussions through the letters we exchanged over the past year. This work was not 
supported by any military agency. 

References 

Abraham R and Marsden J E 1978 Foundations of Mechanics (Reading, Mass: Benjamin) 
Arnold V I 1980 Mathematical Methods of Classical Mechanics (New York: Springer) 
Berry M V 1982 Preprint Utrecht 
- 1983 in Proc. July 1981 ‘Les Houches’ Summer School on Chaotic Behaviour of Deterministic 

Berry M V and Tabor M 1976 Proc. R. Soc. A 349 101 
- 1977 Proc. R. Soc. A 356 375 
Born M and Jordan P 1925 2. Phys. 34 858 
Braun M 1973 J. Differential Equations 13 300 
Castellani L 1978 Nuovo Cimento 48A 359 
Chang Y F, Tabor M and Weiss J 1982 J. Math. Phys. 23 531 
Churchill R C, Pecilli G and Rod D L 1978 in Lecture Notes in Physics vol 93 (Berlin: Springer) 
de Groot S R and Suttorp L G 1972 Foundations of Electrodynamics (Amsterdam: North-Holland) 
Gustavson F G 1966 Astron. J.  71 670 
Gutzwiller M C 1978 in Path Integrals ed J T Devreese (New York: Plenum) p 163 
HCnon M and Heiles C 1964 Astron J. 69 73 
Hietarinta J 1982 Phys. Lett. 93A 55 
Holt C R 1982 J.  Math. Phys. 23 1037 
Kummer M 1976 Commun. Math. Phys. 48 53 
Korsch H-J 1982 Phys. Lett. 90A 113 
Noid D W, Koszykowski M L, Tabor M and Marcus R A 1980 J. Chem. Phys. 72 6169 
Noid D W and Marcus R A 1977 J. Chem. Phys. 67 559 
Percival I C 1973 J. Phys. E: At. Mol. Phys. 6 L229 
Pomphrey N 1974 J. Phys. E: At. Mol. Phys. 7 1909 
Reinhardt W P and Farelly D 1982 J. Physique (Colloque) 43 C2-29 
Robnik M 1981 J. Phys. A :  Math Gen. 14 3195 
- 1982a to appear in Proc. NATO-ASI  Summer School on Photophysics and Photochemistry in the Vacuum 

- 1982b J. Physique (Colloque) 43 C2-45 
- 1983 J.  Phys. A: Math. Gen. 16 to appear 
Robnik M and Zaslavsky G M 1983 Phys. Rev. Lett. (submitted) 
Rosenzweig N and Porter C E 1960 Phys. Rev. 120 1698 
Siege1 C L 1941 Ann. Math. 42 806 
Schriifer E and Robnik M 1983, in preparation 
Springborg M 1983 J. Phys. A: Math Gen. 16 536 
Swimm R T and Delos J B 1979 J. Chem. Phys. 71 1706 
Temple G 1935 Nature 135 957 
Vock E and Hunziker W 1982 Stability of Schriidinger Eigenvalue Problems, Preprint Zurich 
Wan K K and McKenna I H 1982 Preprint, St Andrews University 
Weissman Y and Jortner J 1982 J. Chem. Phys. 77 1469 
Williams R A and Koonin S E 1982 Semiclassical Quantization of the Shell Model, Preprint Caltech, April 

Zaslavsky G M 1979 Sou. Phys.-Usp. 22 788 
- 1981 Phys. Rep. 80 158 

Systems ed R H G Helleman and G Iooss (Amsterdam: North-Holland) 

Ultraviolet, Lake Geneva, USA,  August 1982 

1982 


